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The four-center integral of ri2-l with Slater-type atomic orbitals is evaluated analytically. The Fourier- 
transform convolution theorem is used to express the integral as an infinite sum in which the internuclear 
angles appear in spherical harmonics, and the internuclear distances in integrals over spherical Bessel 
functions and exponential-type integrals. These "radial" integrals are evaluated as convergent infinite 
expansions by contour integration techniques. The formulas are valid for general values of the n, I ,  m, 
parameters of the orbitals and for general nonzero values of the internuclear distance vectors. 

I. INTRODUCTION 

Analytical formulas for the four-center integral of 
r12-l with Slater-type atomic orbitals are derived by 
Fourier transform methods. The approach is similar 
to that of Papers 1-111 of this to which the 
reader is referred for much of the detail. The Fourier- 
transform approach, and the resulting formulas, differ 
considerably from the Taylor-series approach of 
Paper IV.4 The Taylor series method is much easier to 
grapple with analytically, but it yields inflexible, 
slowly convergent formulas. The Fourier transform 
technique is more complicated analytically, but it 
yields more rapidly convergent formulas, with some 
flexibility in how the answers are represented. 

The technique used in this paper readily expresses 
the four-center integral as a double infinite sum of 
one-dimensional integrals ovei the radial Fourier- 
transform coordinate k .  In the three-center cases 
discussed in Papers 1-111, this final integration could 
be carried out in closed form by contour integration 
techniques. In  the general four-center case, we have 
been unable to carry out this final integration in closed 
form. The most important mathematical difference 
between the final integrands of the three- and four- 
center cases is the appearance of two logarithmic 
branch points in the four-center case vs one in the 
three-center case. Our main purpose in this paper is to 
carry out the final integration in terms of convergent 
infinite expansions. 

The formulas given for the four-center integral in- 
volve Condon-Shortley coefficients5 [Eq. (14) of 
Paper I], various versions of the exponential-type 
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integra1,'j E,(%), &(x), a,(x), &(x) [Eqs. (21)-(25) 
of Paper I], and modified spherical Bessel functions: 
g,(x) and X,(x) [Eqs. (15) and (16) of Paper I]. 
The formulas hold for integer-n Slater-type orbitals 
with general values of the I and m quantum numbers, 
with general values of the orbital exponents, and with 
arbitrary nuclear geometry, except that all four centers 
must be distinct. 

11. SPECIAL FUNCTIONSJ NOTATIONJ ETC. 

To simplify the derivations in-mcceeding sections, . . 
we define in this section most of' the special functions _- 
and symbols that are used. 

We denote a Slater-type atomic orbital by 
i\ . (  

*,lmr(r) =NP-I exp(--pr) y z m ( e ,  'p). ( 2 3 )  

The Yz"(0, cp) is a spherical harmonic, ( r ,  8, 'p) are the 
spherical polar coordinates of r, the [ is called the orbital 
exponent, and N is a normalization constant. The n and 
I are integers which satisfy 

n > l + l .  (2.2) 

We use the following standard mathematical func- 

(2.3) 

tions6: spherical Bessel functions, 

jz (x) = ( - x) (x-'d/dx) zx- sin (x) , 
41 (x) = xz (x-'d/dx) zx-l sinh (x) (2.4) 

m x1+28 

(2.5) = c  *=o (2s) !!(21+2s+1) !! 

m p-Z-l(-l)s+Z = c  &ls!!(s-21-1)!! 

. -  
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Spectra (Cambridge University Press, London, 1935). 
6E. U. Condon and G.  H. Shortley, The Theory of Atomic 

4287 

Handbook of Mathematical Functions, M. Abramowitz and I. A. 
Stegun, Eds., Natl. Bur. Std. Appl. Math. Ser. No. 55 (1964). 



4288 K .  G .  K A Y  A N D  H .  J .  S I L V E R S T O N E  

the double factorial function, the logarithmic derivative of the gamma function, 

(2N) !!=2NN! (N20), (2.10) 9(n)  = ( d / d n )  lo@ ; (2.29) 

( 2 N -  1)  !!= (2N)  !/(2N) !! (2.11) the Condon-Shortley coefficients,6 

= ( - 1)N/ ( - 2M- 1)  ! !, (2.12) (Z1m1; Zzm) = [4n/ (2X+ 1)]"* 

1/(2N)!!=O ( N < O ) ;  (2.13) 

various versions of exponential-type integrals, 

En(x)= /mdtt-nexp(-xt) (2.14) 
which are nonzero only when 

1 Z1+ &+A is even (2.31) 
and 

(2.15) (2.32) 

=-(XI (2'16) and the standard expansion, 

=E&)- (-x)~-'[logx-~(?z)]/(n-l) ! m I 
exp(ik-r) = 4 ~  iY~(kr) Ylm*(B, 9) Ylm(eb, qk). 

(n>O) (2.17) w m-I 

(2.33) 

Often we use both Cartesian and spherical polar co- 
ordinates for the same vector, e.g., r, k, R, etc., cor- 

We often meet the expression, (rld/dx)lx-l, which 

= Ln (x) + (4) !xn--l (n.50) (2.18) 

(2.19) 

( I  y I < I x: I ) ,  (2.20) 

- x-' exP(-x) (as x~~ 1, 
respond to (r ,  e: PI, (k, &, d,  (R,  e ~ ,  d, etc. - (-y>"n-dx> 

S! has the expansion 
En(x+y)= c 

3 4  

= ( - d/dx)  En+* ( X) , (2.22) where 

dt tn exp(-xt) ( a z o )  (2.23) 

In  addition to - c-x)' 
3 4  s!(s+n+l) 

=- c (2.24) 

= (- d/dx)&-i (XI, (2.25) 
we define several special symbols u. 

&( X) = i - d/dx)Ei  ( X) , (2.26) peatedly: the 3-A symbol, 

(2.35) 

appear re- 

&(x) =E4, (x )  (by convention), (2.27) (2A1-1) !! 

= [. . . Fhl (cbal) . . .]al-n~-Ai+li ( - d/dca) k+A1-zl, (2.38) 

where F will be either g or X, and where the [. * F *  -1 was used in Paper 111. The { - F .  a }  will also be used 
with subscripts 2, c, d instead of 1, a, b. 
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We define via integrals certain special functions, in terms of which the four-center integral will be expressed. 
The evaluation of these special functions in terms of simpIer functions is postponed to Sec. V; 
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and where 6 denotes the principal value (cf. I). Note 
that we have made the substitution 

integrand. Equations (3.8)-(3.11) represent a con- 
venient starting point for discussion of these complica- 

k= ix (3.12) tions and resolution of the final integration in , ,  
I,d;&b'sd. and used the identity Eq. (2.6). IV. EVALUATION OF Icd;Jad Evaluation of is complicated by two con- 

siderations: the relative values of &, CRZ, and R, which 
eventually determine the behavior of the integrand at 
infinity, and the logarithmic branch points in the 

Our approach to the evaluation of ICd;Jad, i.e., of 
the I(<)  [Eqs. (3.8)-(3.11)] is to exploit as fully as 
possible contour integration techniques. I a t h e  three- 
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Q, 
I 
R 

FIG. 1. The cases and subcases for which the various formulas for 
zcd:abrad are valid. 

center cases, Papers 1-111, it was always possible to 
arrange for the integrands to vanish at  infinity in a 
half-plane containing no singularity worse than a pole 
(i.e., no branch points). The contour was then closed 
at infinity and the integral evaluated by the residue 
theorem. In the four-center case, it does not seem 
possible in general' to use the residue theorem alone. 
There are always terms, no matter how the contours are 
deformed, which involve integrating around logarithmic 
branch cuts. These terms we have evaluated by con- 
vergent infinite expansions. 

We note that the I(i) are functions of many variables. 
There is a great deal of flexibility in the choice of ex- 
pansion variable, and we report here only selected 
choices. 

We assume that the reader is familiar with Papers 
I and 111, which discuss the method in detail. In this 
paper only a brief sketch outlines the path from the 
integration of Eq. (3.5) to the expression of in 
terms of simple functions. 

A. Cases and Subcase Classified by Relative Values 

The manipulation of contours in Eqs. (3.8)-(3.11) 
requires knowledge of the behavior of the integrands at  
infinity. The building blocks of the integrands are 
E,, E,, and X, functions, whose asymptotic behavior 

of @I, @z, and R 

is given by Eqs. (2.19), (2.17), and (2.9). The be- 
havior of the ICi) integrands depends on the relative 
values of Etl, cRz, and R. Without loss of generality, we 
assume the identity [cf. Eqs. (3.4) and (3.5)] 
Icd;nbhk; zzxz;AIAz;Aa(Rl, Et2, R) 

= (- l)A~Iab;cdzzxz;z1x1;AzAl;A8(@~, (R1, R)  (4.1) 
can be used to reverse the roles of 6i1 and (Rz. Then, the 
way the various terms in the integrand vanish a t  
infinity delineate the following three cases with five 
subcases (which are illustrated in Fig. 1) : 

Case 1. R1@1+6i2, 
Case 2. Et12R+@2, 

Subcases (a) : cRl>R>@z, 

(b) : Ri2%>R, 
Case 3. @1-Et21R_<@1+(Rz7 

Subcases (a) : R>@1>@22, 

(b) : @11R2&, 
(c) : cR12@z>R. 

We treat the integration of Icd;abrBd case by case. 

B. Case 1. ( R I + ~ R z ~ R  
For Case 1, the integrands of all four ICi) are domi- 

nated at 00 by Xna(xR). We deform the integrationpath 
to run from 00 +k to 0 to ~0 --e. We now treat each 
IO separately, reducing it to a linear combination of 
the functions given in Sec. 11. 

1. I(" 
Regard I(l)[Eq. (3.8)] as consisting of four terms. 

The term involving 

* '&hi+l[ ( !?a+~bfx)~l ] .  ' *EZAfil[ (Pc+!?d+x)&Z] 

(4.2) 
has no singularities in the right half-plane, where the 
integration contour can be closed, and contributes just 
a residue at  x= 0 to I(1). The term involving 

* '  'EZAl+l[(!?~+!?b-x>Etl]' ' 'EZAz+l[(cc+!?d-~)(Rzl 

(4.3) 
has two logarithmic branch cuts inside the integration 
contour. 'We use the identity 

-L 
7Bdd g$$& values of the parameters a few of the Icd:qbrad cqn be expressed in closed form via the residue theorem. 



A N A L Y T I C A L  E V A L U A T I O N  O F  M U L T I C E N T E R  I N T E G R A L S .  V 4293 

to cast the double logarithmic branch cut in a form [second term on right-hand side of Eq. (4.4)] which can be 
closed in the left half-plane, which has no singularities. The first term on the right in Eq. (4.4) is essentially an 
'3 [Eq. (2.39)], and both terms give contributions from residues at  x= 0. 

The term involving 

' 'EZAl+l[ (ca+cb+x) all' '&Azfl[(cc+cd-x) a21 (4.5) 

has one logarithmic branch cut enclosed by the contour and one outside. We use the identity 
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2. IC2) and IC3) 

In I@), as well as IC3), there is only one logarithmic branch cut enclosed within the contour. Without further 
manipulation, they can be written as Az's [Eq. (2.40)] plus residues for x=O: 

I@)= (-l)A1+X1{.. .SA,({b(Rl). . - 1  {. . . x h s ( r d ( R z )  . a * }  

C. Case 2. R+(R2I(R1 

1. I(1) 

The integrand of I(1) [Eq. (3.8)] is dominated at w by .&A~+l[({a+fbfx)(Rl]. For the (+x) term, the contour 
can be deformed to be (00 +ic, 0, CQ -ie), and for the (-x) term, to be (- 00 +ic, 0, - co -ie) . After substitution 
of -x for x, the latter term can be combined with the former by using Eq. (2.6) to yield a B [Eq. (2.43)] plus a 
residue at  the origin: 

I(')=4(~""'+x'+X2('''gXl(rb(Rl) ".) { ".g,,({&z) * * * )  

Ai 
>( [ & h h - - A ~  (- 1) "( AzA)~?A*1RA3~2A1+l[  (ta+{b) ~l]aO[(~c+rd> @Z] 

- (--1)A3B(A3, R; AI, r 3 + r b ,  (RI; Az, cc+rd:a, (Rz) (Case 2).  (4.12) 1 
2. I ( 2 )  

is also dominated at  00 by &!A1+1[({u+lbfX)6%1], and the contour can be deformed ac- 
cordingly, as for IC1). In this case, however, there are no logarithmic branch cuts enclosed by the contour, and the 
only contribution to the integral is from the residue at  the origin. The result is 

The integrand of 

~("2(-l)A1+X1("'g,l(~b(Rl) " ' }  ( " * x ~ z ( r d & Z ) * ' . ]  

Ai x s A ~ . A ~ - , ~ *  (- 1) A z A ~ ~ A * 1 ~ A 3 ~ Z A 1 + 1 [  (lu+rb) a11 {&O[ (lc+*d)az]-&O[ ( l c - l d )  az]) (Case 2). (4.13) 

3. 1(3) 

is slightly more complicated than I@) for Case 2, because the &?Al+l[({af{bfx)(R1], which contains the 
largest (R, has "mixed" asymptotic behavior [cf. Eqs. (2.19) and (2.17)]. The consequence is that Case 2 has two 
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subcases, depending on the sign of R-&. The contour for the term involving 

a . ~ Z A i + l [ ( ~ a ' a f ~ b + x ) @ l l '  ' .EZA~+l [ (~c+~d+x)&]  (4.14) 

for both subcases can be closed a t  + 00 and contributes only a residue from x= 0. To treat the term involving 

' . ~ z A l + i [ ( 3 6 f ~ b - - x ) @ i ] o  * * & ~ z + i [  ( :~+3b+x)@z] ,  (4.15) 

first pull the contour to the right of x = r a + l b  [picking up a residue at  x=O],  then use 
- 

& ~ l + i = ~ z A l + i +  (&Al+l- &AL+i). (4.16) 

Note that the deformed contour passes to the right of the logarithmic branch cuts a t  x= l a d = l b .  The contour for the 
term in IC3) involving & ~ ~ + l  in Eq. (4.16) can be deformed into L- co +ie, ( t a + h ) - ,  - co -&I, which, after 
letting x+-x, becomes a C2 [Eq. (2.44)] plus a contribution from the residue a t  x=O. The contour for the in- 
tegral containing the last term in Eq. (4.16) can be closed in the right half-plane, where there are no singularities 
to the right of the contour. 

1 

i 

The term involving 
* * ' ~ ~ : , , i + l [ ( r a ~ r b + x > @ l l .  * .EZAz+l[ (rc+!?d-s)@Z] (4.17) 

must be treated differently for the two subcases. For Subcase 2a, Rz<R, the contour can be deformed into ( co +&, 
0, 00 -&), which is seen to be a [Eq. (2.45)] plus a residue at the origin. For Subcase 2b, first pull the contour 
to the left of x= - ( l a + { b )  picking up a residue from x=O, then use Eq. (4.16), the net effect of which is to change 
&:2hl+l into Eznl+i with the logarithmic branch cut to the right of the contour, then deform the contour into [cc, +&, 
( - I a - { b ) + ,  00 -GI. The result is a C2 [Eq. (2 .44) ] .  

Finally, the term involving 

' ' ~ 2 2 h i + l [ ( r a ~ r b - x ) @ l ] '  * ' & ? A z + l [ ( ~ c + ~ d - ~ ) @ 2 ]  (4.18) 

can be similarly treated. It gives a contribution from the residue at  x = O  for both subcases, and in addition, a 
Czc [Eq. (2.46)] for Subcase 2a. 

The results are 

I@)= ( - 1 ) ~ 1 + ~ ~ ( . . . X X 1 ( ~ ~ @ ~ ) . . . ) ( . . . ~ X a ( ~ ~ 2 ) " ' J  

.[ 2 8 A ~ . A p A i ( -  1) ' I (  AlA3 ) @ ~ A 1 ~ 1 ~ A g ( ~ O ~ ( ~ a + s 6 , @ ~ ] - ~ ~ [ ( ~ a - ~ b ) @ l ] ) ~ Z A ~ l [ ( ~ : + ~ d ) @ Z ]  

- (-1)A3C~(&, --R; Ai, Ca'affh, ai; AL, r c + r o ,  %)-CZ(&, R; Ai, l a : a f r b ,  @I; A,, r c c f r d j  @z) 

+Czz(A,, R; Ai, -s6Wt,, @I; A,, r c + b d ,  @z) (Subcase 2a, @25R), (4.19) 1 
I@)= (-l)A1+Az{ * " x X 1 ( { & 1 ) " . )  { "'g,,(t~@~)..')[2*~~,A~-:,,,(-1)"( A )@?""RAS 

Ai& 

x ( & o [ ( c ~ + l b )  @i]-&[(ra- l a )  ai] I E z ~ ~ + i [ ( l ~ +  c d )  a21 
- (- 1)A3C2(&, -R; Ai, ra :a f {b ,  @ I ;  A2, r c + < d ,  @2) 

-cZ(A3, R; Ai, r a f r b ,  6; hz, r c + b d ,  @z) (Subcase 2b, @p>R). (4.20) I 
4. 1(4) 

Subcase 2a is straightforward. The contour for all terms involving J!?ZAl+l[ ( c a a f [ b + X ) @ l ]  can be closed at  
x=+co, and only residues from x=O contribute to the integral. For the remaining teims, one uses Eq. (2.1i) 
for &A,+I. The contour for the " E 2 A l + l [ ( r ~ : a f r b ~ X ) @ l ] "  t e p s  can be closed at x= - Q, , yielding only a residue at 
x= 0, and the "log(~af{b-x) " terms give essentially an A4 [Eq. (2.41)] plus a residue at x= 0. 

The treatment of Case 2b, R<@z, involves the following maneuvers: For the 

. * * ~ ~ A l + l [ ( ~ ~ o f ~ b + ~ ) @ i ] '  ' '-&A2+1[ (!?cj=ld+X)&] (4.21) 
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term, close contour a t  x= + w to obtain the residue contribution from x=O. For the (+x(R1) (-A@) terms, pull 
the contour to the right of x = { c + { d  [picking up a residue from x=O],  then use 

' * *EZA~+l[({af~b+x)@l] ' ' *~ZA2+l~(~cf~d. -x)~Z]  

= ' * *(RlzA'({af{b+x)2A1 lOg({af{b+x) / (2A1) !* 'EzA2+l[ ({cf{d- x) (Rz] 

+ { * '~ZAl+l[({af{b+x)(Rl]' ' 'J%A~+l[({cfrd-~)(RZ] 

~ ' " ~ 1 2 A 1 ( ~ a f ~ ~ + ~ ) 2 A '  log({af{b+x)/(2di) ! . ' . E z A ~ l [ ( { c f { a - ~ ) ( R z ] ) .  (4.22) 

The integral over the bracketed terms in Eq. (4.22) vanishes, because the contour can be closed at x= w and does 
not enclose any singularities. The contour for the integral over the first term on the right of Eq. (4.22) can be de- 
formed to [- w +ie, ( { c + { d ) - ,  - w -;e], which, after letting x--x,  is seen to be a C4z [Eq. (2.46)]. 

Finally, we consider the remaining terms together. By virtue of the derivatives (x-'d/dx) %-I, in the integrand 
of I(') [Eq. (3.11)], there is an identity [cf. I, Eq. (48)], 

6 d x X ~ , ( x R )  . ' '~2Ai+I[({af{b-x)(Rl](x-'d/dx) " ~ ~ ' { ~ Z A ~ + l [ ~ ~ ~ f ~ d ~ ~ ) ~ Z ] ~ ~ Z A + l [ ~ ~ c f ~ d ~ ~ ~ ~ Z ] ]  J 
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D. Case 3 

1. I ( 1 )  

The treatment of is exactly the same for Case 3 as for Case 1, except that the contour for the term involving 

'%Ai+l[(Sh+{b--x)@l]' *-&Az+l[({c+{d-x)@Z] (4.26) 

can be closed at  x= - 00 , yielding only a residue at  the origin and no a. The result is: 

2( - 1) A1+xl+xz{ * * '$Xi({b@l) * . 1 { ' * *$i,({&Z) ' ' 1 



1 dxXA3(xR) * * ' E Z A 1 + 1 [ ( ~ a f ~ b - ~ ) ~ l ] '  ' f & & + l [ ( ~ c * ~ d + ~ > ~ 2 ] .  (4.33) 

In Case 2, the contour for this term could be closed at  x= - w , and only a residue from x= 0 survived. In Cases 
3b and 3c [ c R I ~ R ] ,  an additional part of (4.33) survives 

(4.34) 

which is essentially C4 [Eq. (2.48)]. 
For Case 3a, the contour for those terms in I(4) which involve E . & , + l [ ( { c f { d + X ) & ]  can be closed at  x= co in 

the right half-plane and contributes only a residue at x= 0. The remaining terms can be written rafter taking into 
account the effect of the { - .Xx(xR) * - - operators] 

1 dxXAa(xR) ' ' { ~ ~ A ~ + l [ ( ~ u f ~ b ~ ~ ) ~ l ] - ~ Z A i + l [ ( S h c f ~ b - ~ ) ~ l ~ ~  ' ' ~ Z A ~ l [ ( { c d = ~ d - x ) @ t a ]  

- 1 d%XA3(xR) .' . E Z A l + l [ ( S h f { b - x ) ( R l ] '  * . E n A z + l C ( { ~ f { ~ - X ) ( R . r l .  (4.35) 

The four terms on the right-hand side of gq. (4.35) go to zero, respectively, at x= + w , + co , + CO, and - Q) , and, 
in addition to residues at  x=O, yield an A4 [Eq. (2.41)]! c 4  [Eq. (2.49)], CJ [Eq. (2.50)], and zero, respectively. 
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V. EVALUATION OF CERTAIN SPECIAL FUNCTIONS 

In this section we give formulas for the special functions defined in Eqs. (2.39)-(2.50). It should be noted that 
into special functions is not unique. After exploring several alternative choices, we de- the breakdown of 

cided on the formulation given here, with the following aims in mind: 

(1) All infinite expansions should be convergent in the appropriate regions of Fig. 1, Le., convergence should not 

(2) There should be no "canceling" singularities in the final formulas when c e e  combinations of p's vanish. 
(3) The number of infinite summations should be as few as possible (believe it a!). 

depend on the relative magnitudes of the 1's. 

A. % 

The 8 [Eq. (2.39)], which appears only in I(]), Case 1, is designed so that the X,(xR) dominates the integrand 
at  00. The only singularity in the right half-plane is a logarithmic branch point a t  x=t l  (the logarithmic singu- 
larities in the two Ez~~+l's cancel). We use 
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the definitions of XA,(XR) [Eq. (2.7)] and an [Eq. (2.16)], and the expansion for E,(x+y) [Eq. (2.20)]. The 
result is 

8 (As, R; A2, t 2 ,  @2; Ai, li, ai) = (- 1) A33-1A1-ArA~2a~2A1a~A2 C riS[~!!(s-2A2- 1) !!?I 
W 

s-0 

The expansion (5.3) converges everywhere in Region 1, except at the single point &=6iZ=O, where the four- 
enter integral reduces to an ordinary two-center Coulomb integral. 

B. A2 

Evaluation of A2 is similar to that of '2l [cf. Eqs. (2.39) and (2.40)] except that the expansion 
(2.28) for gn(x+y) is used instead of the expansion for E,(x+y) .  The result is 

A2(&, R; Ai, i-a+cb, ai; A2,l2, @c?) 

W 

= -2(- 1)A3~2A1'+A"A5-'~12A1+1~(22Az (r2Ui1)2s[(2s+2Al+ 1) !!(2s) !!TI 
S=4 

Az 

P2--0 
X {&e[ (la+{b) ai]- a,[ ( l a - r b )  ai]} ( - 1) fi2[ (2A2- 2~2) ! ! (2~2) !!I-' 

xRAa E' - R-'aAl+Ar-A,+2~-2rc2-2(r~)  * (5.4) ( (&)hi 
The expansion (5.4) for Az converges everywhere in Region 1 except a t  the point (ai=& &= 0), in which case 

the four-center integral reduces to a (1-2) -type three-center integral [see Paper I]. 
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D. 23 
In  evaluating23 [Eq. (2.42)], we use Eq. (5.2), the expansion for XA, [Eq. (2.8)], and Eqs. (2.34) and (2.35) 

to expand (x-ldldx) A~x-l, to obtain, 

a ( & ,  R; AI, 11, CRI; Az, 12, &)= (-1)A2@12A’~z2A2 f(2Az-2p2) !!(2p2) !!>I 
P l 4  A‘ r z 4  E1 

m 

x (R+@~)-~l-~l(- l)’21$‘2 [S!!(S-2&- 1) !!l-’ReAP1 
a=o 

XN(~+Az-&-p1-2pz-3; &+gi, 11, R+&; 0, 12, 1). (5.6) 
The N is defined by 

We evaluate N for v&O when n20,  since these cases are required for B Csee Eq. (5.20)l. For n<O, we need 
only vz=O. First, when n20, use 

in Eq. (5.7), then integrate by parts (v2+t) times, to obtain 

When n=-N-l<O, we take the following approach: 

(5.10) 

= (s.l+12)-N /I di(t- I)-”-’E,l+l~~ll+~z~@ltl (5.11) 
11+ 1 2  

Expand [x-ll/(ll+lJ]-N-l in a Laurent series and integrate term by term to obtain 

The series (5.13) for N is convergent whenever I 1l/({l+{z) I < 1. 

integral function [cf. Eqs. (2.14), (2.17), and (2.21)] and is defined by 
In Eq. (5.13) we have introduced the special function E,’(%). This function is closely related to the exponential 

(5.14) 

where 

and +( n) is defined in Eq. (2.29). 
J,(l) = ( d / d n )  J ,  (n) (5.17) 
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Note that only a finite number of terms in Eq. (5.6) for B have (s+Az-A8-2p2-p1-3) <O, and require the 

Expansion (5.6) for 8 converges whenever I R/(R+(Rz) I < 1. 
representation of k4 given in Eq. (5.13). 

E. B 

Insertion of the series expansion for ~ A ~ ( x R )  [Eq. (2.5)] into Eq. (2.43) for B focuses attention on terms of the 
type 

(5.18) 

Close inspection reveals that if the integrand of (5.18) is rewritten as (derivatives off) X (derivatives of g) X 
(powers of x) , the only negative power of x which occurs is s-l, in the special case &= I &-A, I and s= 0. Thus, 
with the aid of Eqs. (2.34) and (2.35), terms like (5.18) can be written*: 

The first term on the right term in Eq. (5.19) is essentially an N of the kind evaluated in Eq. (5.9). The integrands 
of the terms each contain only one logarithmic branch cut (the other has been differentiated into a 
pole), and these integrals can be evaluated by manipulations which permit their contours to be closed in the 
half-plane containing only poles. The result is 

x (~ l -1&2A&l[  ( ~ l + ~ Z ) ( R l ] ~ ~ ~ ~ ( ~ l ~ l ) ~ z A ~ l ( { z ~ l )  j. (5.20) 

Equation (5.20) for B converges whenever I R/(Rl I < 1. 

F. C-Type Functions 

Consider first CZ [Eq. (2.44)]. Since it is possible to deform the integration path so that always I x I> I {a+{b 1, 
we can use Eq. (2.20) to expand the &Al+l[({a=t~t,+x)(R1] in powers of ({&{b). We note that C2 is always oper- 
ated on by { a - -Xxl({&l) a ] which contains derivatives [see Eq. (2.37)] that make at  least the first 2Al terms of 
the expansion vanish, and that, therefore, each surviving term in the expansion contains only a pole [see Eq. 

8 For a more complete discussion of the arguments leading to the6At.(Al-A11 terms in Eq. (5.19), see H. J. Silverstone, J. Chem. 
Phys. 46, 4377 (1967), Eqs. (12)-(1.5). 
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+ 1 dx. * - (R+(Ri)-Az2-~zE~z+p2+~[({~-~) (R+@i)]. (5.23) 

The contour for the second term on the right in Eq. (5.23) can be closed at - rn in the left half-plane where the 
integrand has no singulanties. The only singularities enclosed by the contour of the first integral on the right in 
Eq. (5.23) are poles a t  x=O,  and this integral can be evaluated by the residue theorem. The result is 

{ ...Xxl({b(Rl)...)Cz(Ae, R; AI,{~&{~,(R~;Az,{z, &)= {**.XA,({~,(R~).*-] (-l)A3(R?A1+1@~2AzRA3 R-l- R-' ( f R Y  

x { ( ~ + ~ i ) - A t ~ z ~ ~ z + ~ ~ + l C ~ ~ ( R + @ i ) ] - ~ Z - A ~ ~ 2 E A 2 + p ~ l  ({2&!2) 1. (5.24) 

[Eq. (2.45)] and C2' [Eq. (2.46)] are evaluated in an almost identical way, except that E2;Bl+1[({l+X)(R1] 
and ({1+~)~~1log({i+x), respectively, are expanded instead of Ezkl+l, and that in the C2t case, Eq. (5.21) is not 
used. The results are 
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C4, c d ,  and CqZ are evaluated from the formulas derived above for CZ, &, and CZ~, [Eqs. (5.24)-(5.26)], respec- 
tively, via Eqs. (2.48)-(2.50). The results are 

( ' " X ~ ~ ( ~ ~ ~ ~ ~ " ' } { " ' X ~ ~ ( ~ ~ ~ Z ) ~ ~ * ~ ~ ~ ( & , R ~ A I ~ ~ ~ ~ ~ ~ ~ ~ I ~  Az,rccfrd,(R~) 

= { Xxl ( c b a l >  - '1  { - %Az (cdaz) - 1 ( - 1) ~za,tal+la22~2~~3( R-1 gTR-1 

VI. SUMMARY 
The four-center integral of rlz-l with Slater-type 

atomic orbitals has been evaluated analytically. 
Equations (3.3) and (3.4) express the integral as an 
infinite sum over spherical harmonics of the internuclear 
angles multiplied by the "radial" integral, Icedrsd. 
Equations (3.7)-(3.11) decompose Icd;,,brad into four 
terms: IC1), ICa), IC3), and IC4). Equations (4.8)-(4.13), 

and (4.36)-(4.38) express these I(;) in terms of special 
functions defined in Eq. (2.39)-(2.50). Finally, Eqs. 
(5.3)-(5.6), (5.9), (5.13), (5.20), and (5.24)-(5.29) 
represent the special functions as convergent infinite 
expansions involving various versions of the exponen- 

(4.19) , (4.20) , (4.24) , (4.25) , (4.27) , (4.29)-(4.32), 

tial-type integral [Eqs. (2.14) , (2.16)-(2.18), and 
(5.14)]. The formulas given are valid for all integer- 
n-type Slater-type orbitals (n>Z+ 1) with general 
values of the 1 and m quantum numbers and general 
values for the orbital exponents. In  addition, the 
formulas are valid for arbitrary nuclear geometry, 
provided that all four centers are distinct. 

This paper completes a first goal of the series-the 
development of purely analytical formulas for two- 
electron multicenter integrals of r12-I with Slater-type 
atomic orbitals. Subsequent work will deal with 
asymptotic expansions for large internuclear distances, 
recursion formulas, and the practical details of obtain- 
ing numbers. 




